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Abstract
Langevin Monte Carlo is a popular algorithm for posterior inference, and has received growing

interest recently because of its simplicity and scalability. A fundamental result, due to Jordan,
Kinderlehrer and Otto, reveals that the standard Langevin Monte Carlo method may be seen as
a gradient method for maximization, showing a link between optimization and sampling. This
insight has been fruitful, and has enabled the application of ideas from optimization to sampling
(and vice versa). In this paper, we look at transferring recent results from implicit regularization
to sampling. In particular, we prove a number of results showing that an early-stopped variant
of the Langevin iteration on the likelihood, can converge to a target posterior faster than
the usual Langevin iteration on the posterior. A key feature of our analysis is that we adopt
a continuous-time (i.e., stochastic differential equation) perspective, simplifying many of the
arguments. We describe some applications of these results, e.g., to Bayesian quadrature, and
give extensive numerical evidence supporting our general theory.
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1 Introduction
Consider a posterior distribution over some parameters of interest β ∈ Rp given data y1, . . . , yn ∈ R,
having density fβ|y1,...,yn

of the form

fβ|y1,...,yn
(β; y1, . . . , yn) ∝ exp

(
− Fβ|y1,...,yn

(β; y1, . . . , yn)
)
,

where Fβ|y1,...,yn
: Rp 7→ R. In this paper, we consider the problem of efficiently drawing samples from

such a distribution, when Fβ|y1,...,yn
possesses at least some curvature, but can be quite complicated

in general.
Rapidly generating samples from a complex probability model is of course a fundamental problem

in both computational statistics and machine learning, and has a number of important applications,
with work on the topic going back decades (Ermak, 1975; Cesa-Bianchi and Lugosi, 2006; Rademacher
and Vempala, 2008; Braun and McAuliffe, 2010). Broadly speaking, there are two high-level
approaches to sampling: Markov chain Monte Carlo-type approaches (Brooks et al., 2011; Robert and
Casella, 2013), and variational Bayes-type approaches (Jordan et al., 1999; Blei et al., 2017; Zhang
et al., 2018). Variational Bayes methods work by finding a tractable lower bound on the marginal
probability of the data that minimizes a measure of divergence from the target posterior, whereas
Markov chain Monte Carlo methods work instead by constructing a Markov chain whose stationary
distribution is the posterior of interest. Each of these two approaches has its own respective strengths
and weaknesses, with the right tool for the job usually depending on the characteristics of the specific
problem at hand.

In the current paper, we focus on Markov chain Monte Carlo methods. A key challenge with these
is scalability, i.e., as the size of a data set grows, the convergence of Monte Carlo-style methods to the
target posterior is notoriously slow. Therefore, in recent years, there has been a considerable push
towards developing scalable methods of this type. The class of Hamiltonian Monte Carlo methods
(Neal, 2011) — and, in particular, the Langevin Monte Carlo algorithm (Ermak, 1975; Rossky et al.,
1978; Parisi, 1981; Grenander, 1983; Neal, 1993; Grenander and Miller, 1994; Roberts and Tweedie,
1996) — have become popular over the last few years because of their simplicity, and good statistical
performance across a variety of problems (Mazumdar et al., 2020; Welling and Teh, 2011; Corbineau
et al., 2019; De Bortoli et al., 2021).

The standard (i.e., unadjusted, or overdamped) Langevin Monte Carlo algorithm works as follows.
Collecting the data y1, . . . , yn into the vector y = (y1, . . . , yn) ∈ Rn, we define the sequence (β(k))k≥0
by initializing β(0) ∈ Rp sampled from some specified distribution, and by iterating

β(k) = β(k−1) + τ · ∇ log fβ|y(β(k−1); y) +
√

2τ · z(k), for k = 1, 2, 3, . . . , (1)

where τ > 0 is a fixed step size, and z(k) iid∼ Normal(0, Ip), for all k ≥ 1. Here and through the paper,
∇ log fβ|y(·; y) refers to the gradient of the function β̃ 7→ ∇ log fβ|y(β̃; y). At first blush, the iteration
(1) above is reminscent of the usual gradient method for maximizing a function g : Rp 7→ R, i.e.,

β(k) = β(k−1) + τ · ∇g(β(k−1)), for k = 1, 2, 3, . . . . (2)

The connection can, in fact, be made precise; an elegant body of work (see, e.g., Jordan et al. (1998);
Dalalyan (2017b,a); Ma et al. (2019b); Wibisono (2018); Ma et al. (2019a); Cheng et al. (2019, 2020);
Mou et al. (2021)) elucidates a number of links between variants of the Langevin algorithm and
gradient methods.

1.1 Implicit regularization, and this paper
The optimization-based perspective on the standard Langevin algorithm, i.e., viewing (1) and (2) as
related in some sense, is fruitful, because it allows us to port ideas from optimization to sampling and

3



vice versa, e.g., giving rise to new algorithms for sampling (Martin et al., 2012; Simsekli et al., 2016;
Brosse et al., 2017; Hsieh et al., 2018; Cheng et al., 2018b; Ma et al., 2019a; Chewi et al., 2020).

To the point, a recent strand of work in optimization has sought to understand the structural
properties and “implicit regularization" of the solutions to learning and statistical estimation problems
recovered by specific optimization algorithms; see, e.g., Nacson et al. (2019); Gunasekar et al. (2018);
Soudry et al. (2018); Suggala et al. (2018); Ali et al. (2019); Poggio et al. (2019); Ji and Telgarsky
(2019). A takeaway, translated into the language of the current paper, is as follows (Suggala et al.,
2018; Ali et al., 2019, 2020). The maximum a posteriori estimate associated with the posterior

fβ|y(β; y) ∝ fy|β(β; y) · fβ(β),

where the prior density fβ(β) is that of a normal distribution Normal(0, Ip/λ), for some fixed λ > 0,
is equivalent in a certain sense—or rather, close—to the k∗th iterate generated by the gradient ascent
iteration (2), with k∗ = ⌈1/(τλ)⌉, when run on the log likelihood −Fy|β (corresponding to g = −Fy|β ,
in (2)).

It is worth re-emphasizing what was just said: ridge-penalized M-estimation is equivalent, in a
certain sense, to gradient descent on the negative log likelihood. The connection is an instance of the
well-known observation (Strand, 1974; Morgan and Bourlard, 1989; Friedman and Popescu, 2004;
Ramsay, 2005; Yao et al., 2007; Raskutti et al., 2014; Wei et al., 2017) that early-stopped gradient
descent is equivalent to implicit ℓ2 regularization. From a practical standpoint, the link is useful
because it suggests that we can use the computationally relatively cheap gradient descent iteration,
instead of solving the more expensive M-estimation problem.

Naturally, putting the pieces together, we might now ask: can early-stopped Langevin Monte
Carlo reach a target posterior faster than the usual Langevin Monte Carlo iteration? The current
paper centers around answering this question. In this paper, we show in a precise sense that:

“early-stopped Langevin Monte Carlo on the likelihood fy|β is equivalent, in a certain sense, to
posterior inference on fβ|y with a Normal(0, Ip/λ) prior.”

We require a bit more notation to make the claim precise; the next section gives a few more details,
followed by a summary of our results.

2 A look at the results
A concrete example may help explain the ideas behind the paper. We start by assuming the usual
setup in Bayesian linear regression (e.g., Gelman et al. (1995); Bishop (2006); Ghosh et al. (2006)),
i.e.,

β(λ) ∼ Normal(0, Ip/λ) and y | β(λ) ∼ Normal(Xβ(λ), σ2 · Ip), (3)

where X ∈ Rn×p and σ > 0. In words, we assume both the prior fβ(λ) and the likelihood fy|β(λ)
are Gaussian distributions. In particular, the prior has mean zero and covariance Ip/λ, for some
fixed λ > 0, whereas the likelihood has mean Xβ, for a fixed data matrix X and isotropic covariance
σ2 · Ip. Here and in what follows, we denote the parameters by β(λ), in order to emphasize their
dependence on the prior precision strength λ. The model (3) also implies that the posterior fβ(λ)|y is
a Gaussian distribution with a certain mean and covariance structure, i.e.,

β(λ) | y ∼ Normal
(

(X⊤X + λ · Ip)−1X⊤y, (X⊤X + λ · Ip)−1
)

. (4)

Now the standard Langevin iteration, applied to (3) and starting with some β
(0)
λ , is just

β
(k)
λ = β

(k−1)
λ + τλ · ∇ log fβ(λ)|y(β(k−1)

λ ; y) +
√

2τλ · z
(k)
λ , (5)
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where τλ > 0 is a step size, and z
(k)
λ ∼ Normal(0, Ip), for k = 1, 2, 3, . . .. On the other hand, the

early-stopped Langevin iteration on just the likelihood fy|β(λ) in (3), starting with some β(0), is

β(k) = β(k−1) + τ · ∇ log fy|β(λ)(β(k−1); y) +
√

2τ · z(k), (6)

where τ > 0 and z(k) iid∼ Normal(0, Ip), for all k. Notice the presence of the likelihood fy|β(λ) in (6),
compared with the posterior fβ(λ)|y in (5). Of course, for the Gaussian data model (3), we have that
the posterior is of the form

fβ(λ)|y(β; y) ∝ exp(−∥y − Xβ∥2
2/2),

so that
∇ log fy|β(λ)(β; y) = X⊤[y − Xβ]. (7)

In this paper, we (roughly) claim that

W 2
2
(
Law(β(k∗)), Law(β(λ) | y)

)
≈ 0, (8)

in a suitable sense, when k∗ = ⌈1/(τλ)⌉. Here,

W 2
2 (Law1, Law2) = inf

P ∈P(Law1,Law2)
EW,Z∼P ∥W − Z∥2

2

in (8) denotes the squared 2-Wasserstein distance between the laws—i.e., probability distributions—
Law1, Law2, and P(Law1, Law2) denotes all couplings of those laws, namely joint probability
distributions of (W, Z) having Law1, Law2 as the marginals of W, Z, respectively (e.g., Villani, 2003).
We frequently write W 2

2 (W, Z) as a short-hand for the same quantity. The Wasserstein distance is
an intuitive and convenient notion of distance on the space of probability measures (e.g., absolute
continuity restrictions), and bears connections to other well-known probability metrics. However, the
proposal above, i.e., doing early stopping on the process (6) instead of running (5) to convergence,
may seem somewhat strange at first, because of issues related to burn-in. The key is to recognize that
we must perform early stopping on a different Markov chain, i.e., one associated with the likelihood
(not the posterior, as we usually would).

Moreover, because the laws are close, the expectations must also be close, and therefore we also
have, for any Lipschitz continuous test function g : Rp 7→ R, that

1
k∗

k∗∑
j=1

g(β(j)) ≈ 1
ℓ

ℓ∑
j=1

g(β(j)
λ ) ≈ Eβ(λ)|y

[
g(β(λ))

]
,

in a suitable sense, where ℓ ≫ k∗ is some (large) number of iterations.

A short numerical example. Returning to the main thread, we may check the claim (8) above
by computing the relative sampling efficiency,

RSE(β(k), β
(k)
λ ) =

W 2
2
(
Law(β(k)

λ ), Law(β(λ) | y)
)

W 2
2
(
Law(β(k)), Law(β(λ) | y)

) , (9)

so that the relative sampling efficiency is large when the denominator is smaller than the numerator,
and hence early stopping on (β(k))k≥1 helps. This is what we would expect around k∗ = ⌈1/(τλ)⌉
iterations, in line with (8). Figure 1 shows the results of a small simulation study, where we generated
data according to (3) for three different values of λ ∈ {0.1, 0.3, 0.5} (see Section 7 for details), ran
the discrete time iterations (5), (6), and then computed (9). From the figure, we can see that the
relative sampling efficiency becomes large near k∗ iterations, as expected.

5



Figure 1: The relative sampling efficiency, defined in (9), of the early-stopped Langevin Monte Carlo
iteration on the likelihood (6) over the standard Langevin Monte Carlo iteration on the posterior (5),
for Bayesian linear regression (4), with various values of the prior precision strength λ ∈ {0.1, 0.3, 0.5}.
The relative sampling efficiency is large when the number of iterations k ≈ 1/(τλ), as indicated by the
dots, and small otherwise, suggesting that early-stopped Langevin Monte Carlo on the likelihood is in
fact performing posterior inference, as our theory predicts. See Sections 4 and 7, for further details.

2.1 Overview of contributions
Below is a summary of our contributions in this paper.

• In Section 4, we give a tight bound on the squared 2-Wasserstein distance between the law
of the early-stopped Langevin iteration on the likelihood at k∗ = ⌈1/(τλ)⌉ iterations, i.e.,
Law(βk∗), and the law of the true posterior over β(λ), under the Gaussian data model (3).

• In Section 5, we move beyond the fundamental Gaussian model, and give a few more general
bounds on the Wasserstein distance between β(k) and β(λ), where we require that the prior
still be Gaussian, but the likelihood need not be. First, we give a bound for the situation
when the likelihood is strongly log-concave (in β(λ)). Then, we present a bound covering the
more general case when the likelihood is only strongly log-concave outside of a neighborhood
centered around the prior mean.

• We also provide a related bound on the Monte Carlo integration mean squared error in Section
6, i.e.,

Eβ(λ)|y

[(
1
k∗

k∗∑
j=1

g(β(j)) − Eβ(λ)|y
[
g(β(λ))

])2]
,

where g : Rp 7→ R is a smooth function, arising from using early-stopped Langevin dynamics
for numerical integration. Numerical integration is, of course, an important and challenging
problem intrinsically tied to posterior inference; our bound (as well as the associated numerical
experiments) illustrate that the early-stopped iteration can help here, too.

• Finally, in Section 7, we present extensive numerical simulations — covering Bayesian generalized
linear models, quadrature, and non-strongly-log-concave likelihoods — giving backing to our
general theory.

2.2 Outline
Here is a brief outline for the rest of this paper. We review related work in the next section. Then, we
study the Bayesian linear regression setting discussed above in more detail, and give a few different
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quantitative results, in Section 4. In Section 5, we relax the assumption that the likelihood must be
Gaussian, and allow it to be strongly log-concave outside of a ball. Finally, in Section 7, we present
our numerical experiments, before concluding with a short discussion in Section 8.

3 Related work
There is a lot of work related to the ideas in this paper. Sampling is, of course, an old topic, with a
rich history in both applied mathematics and statistics. The introduction of the Langevin Monte
Carlo method itself can be traced as far back as Ermak (1975); Rossky et al. (1978); Parisi (1981);
Grenander (1983); Neal (1993); Grenander and Miller (1994); Roberts and Tweedie (1996) (at least).
Some early works studying the method, focusing on its convergence properties, include Jordan
et al. (1998); Talay and Tubaro (1990); Gelfand and Mitter (1991); Lamberton and Pages (2002).
More recently, the Langevin Monte Carlo method has received a resurgence of interest, driven at
least partly by a growing preference for scalable algorithms; these recent works have mainly looked
at providing non-asymptotic convergence analyses under various notions of divergence, and under
various assumptions (e.g., smoothness and convexity) tailored for modern applications. Some key
references here include (but this is by no means an exhaustive list): Dalalyan and Tsybakov (2009);
Dalalyan (2017a,b); Zou et al. (2020); Dalalyan and Riou-Durand (2020); Cheng et al. (2018a); Cheng
and Bartlett (2018); Cheng et al. (2018b); Hodgkinson et al. (2021); Ma et al. (2019b); Dalalyan
and Karagulyan (2019); Dalalyan et al. (2019); Cheng et al. (2019); Ma et al. (2019a); Erdogdu and
Hosseinzadeh (2021); Nguyen et al. (2021). On a related note, recent work (Welling and Teh, 2011;
Sato and Nakagawa, 2014; Teh et al., 2016; Raginsky et al., 2017; Brosse et al., 2018) introduced
and studied stochastic gradient Langevin dynamics, a scalable and popular variant of the standard
Langevin Monte Carlo method.

Analyses of the basic Langevin iteration performed in continuous-time — also a key feature of our
approach in this paper, as we detail in the next section — appeared immediately; see, e.g., Villani
(2008); Ambrosio et al. (2008); Gozlan and Léonard (2010). Continuous-time analyses have seen wide
applicability in various corners of convex optimization (Raginsky and Bouvrie, 2012; Xu et al., 2018;
Orvieto and Lucchi, 2019), and more recently, statistical theory (Mandt et al., 2015; Wang and Wu,
2020; Ali et al., 2019, 2020).

The optimization-based view of sampling algorithms can be traced back to the seminal work of
Jordan et al. (1998), with plenty of recent follow-up, e.g., Martin et al. (2012); Simsekli et al. (2016);
Brosse et al. (2017); Hsieh et al. (2018); Cheng et al. (2018b); Ma et al. (2019a); Chewi et al. (2020).

Finally, implicit regularization has, of course, seen intense activity over the last few years; see,
e.g., Yao et al. (2007); Neu and Rosasco (2018); Du et al. (2018); Gunasekar et al. (2018); Nacson
et al. (2019); Wu et al. (2020); Vaskevicius et al. (2019). Most of these papers study the statistical
properties of the convergence points of various iterative optimization algorithms, though there are a
few exceptions that study pathwise behavior (Suggala et al., 2018; Ali et al., 2019, 2020) — making
them very relevant to the analyses we carry out in the current paper.

4 Bayesian linear regression
We begin by analyzing the Gaussian setup, first presented in (3), in more detail, and make precise the
qualitative observations we made in Section 2. The key to the analysis is adopting a continuous-time
perspective. It is well-known that the Langevin iterations given in (5), (6) are the Euler discretizations
of the continuous-time stochastic processes (β̃t)t∈[0,∞), with initialization β̃0 = β

(0)
λ and

dβ̃t = ∇ log fβ(λ)|y(β̃t; y)dt +
√

2 · dW̃t (10)
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and (βt)t∈[0,∞), with initialization β0 = β(0) and

dβt = ∇ log fy|β(λ)(βt; y)dt +
√

2 · dWt, (11)

respectively. Here, (W̃t)t∈[0,∞) and (Wt)t∈[0,∞) denote two independent instances of standard p-
dimensional Brownian motion. We refer to the processes (10), (11) as standard and early-stopped
Langevin dynamics, respectively. We can always apply our results in continuous-time to the original
discrete time Langevin iterations (5), (6), as due to the triangle inequality

W2
(
Law(β(k)), Law(β(λ) | y)

)
≤ W2

(
Law(β(k)), Law(βt))

)
+ W2

(
Law(βt), Law(β(λ) | y)

)
, (12)

and the first term on the right-hand side simply accounts for discretization error; cf. Corollary 4,
appearing below.

In the Gaussian setting, i.e., from (7), the dynamics in (11) simply become

dβt = X⊤[y − Xβt]dt +
√

2 · dWt. (13)

Standard results (see, e.g., Kloeden and Platen (2013), or Lemma 2 in Ali et al. (2020)) then imply
that the stochastic differential equation (13) has a unique strong solution. The Gaussian setting,
in particular, is convenient because the dynamics in (13) belong to the class of linear stochastic
differential equations, i.e., differential equations that are linear in both the process βt itself, as well
as the increments of the Brownian motion dWt. The Ornstein-Uhlenbeck process is a well-known
example of this kind of stochastic process. Good general references on the topic are Øksendal (2003);
Shreve (2004).

We can always obtain an explicit expression for the solution βt to a linear stochastic differential
equation. For (13), we have, for any fixed T > 0 and for all t ∈ [0, T ],

βt = γt +
∫ t

0
exp

(
(s − t)X⊤X

)√
2dWs, (14)

where
γt = (X⊤X)+(I − exp(−tX⊤X)

)
X⊤y,

A+ denotes the Moore-Penrose pseudo-inverse of A, and exp(A) denotes the matrix exponential
of A; additionally, see Lemma 2 in the appendix. To be clear, the randomness in the process βt

arises from the random parameters β(λ), as well as the randomness inherent to the Langevin Monte
Carlo algorithm itself. Combining (14) with a convenient representation of the Wasserstein distance
between two Gaussians (see, e.g., Proposition 7 in Givens and Shortt (1984), or Takatsu (2011))
leads to the following result, tightly coupling the laws of the early-stopped Langevin dynamics βt

and the underlying parameters β(λ) | y, in expectation over draws of y.
When stating our results in this paper, we always write si ≥ 0, i = 1, . . . , p, for the eigenvalues

of the Gram matrix X⊤X. For two real-valued variables a, b, we write a ∧ b = min{a, b}. For a
positive integer i, we write [i] = {1, 2, . . . , i}. We also write L = maxi∈[p] si, and m = mini∈[p] si,
for the largest and smallest eigenvalues of the Gram matrix, respectively. Throughout the current
section, we assume that m > 0, though this assumption could be relaxed here, at the expense of
more complicated proofs.

Theorem 1 (Bound on expected W 2
2 ). Let A = 0.2379 and B = 1.026. Under the model (3),

the law of the early-stopped Langevin dynamics (13), at the stopping time t∗ = 1/λ and under the
initialization β0 = 0, satisfies

Eβ(λ),y

[
W 2

2 (βt∗ , β(λ) | y)
]

≤
p∑

i=1

(Asi) ∧ (Bλ)
si(si + λ) .
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We make a few remarks on the theorem.

• The bound in Theorem 1 says that, in general, we should expect the Wasserstein distance
between βt and β(λ) | y to be small. At the extreme points, e.g., when the prior precision
strength λ → ∞, we can see that the bound goes to zero. Intuitively, this makes sense, as in
this case the posterior from (4) is concentrated at the prior mean (i.e., zero), and the initial
point βt = 0 is optimal. Similarly, when λ → 0, the prior is flat, i.e., uninformative, so that βt

with t = 1/λ → ∞ is optimal as it converges in distribution to the least squares estimator, (4)
with λ = 0.

• We believe the emergence of the (small) absolute constants A = 0.2379 and B = 1.026 is rather
remarkable. These constants come from numerically maximizing a certain function that arises
in the proof. Additionally, another interesting feature of Theorem 1 is that it reduces a complex
object of interest, i.e., the Wasserstein distance with respect to a continuous-time stochastic
process, to a simple functional of the eigenvalues of the Gram matrix, with explicit numerical
constants.

• At a high-level, the proof strategy is to first invoke the explicit representation of the solution
βt, as in (14), to the linear stochastic differential equation (13), and its Wasserstein distance
to β(λ) | y. Then, we carefully control the functionals of the eigenvalues si, i = 1, . . . , p, that
follow from these expressions, in order to get a tight bound.

• In Section 7, we numerically investigate the tightness of the bound from Theorem 1.

It is also possible to give a similar result bounding the distance between the laws of βt and
β(λ) | y, except holding with high probability; the following corollary gives the details.

Corollary 1 (Bound on W 2
2 , high probability version). Assume the same conditions as in Theorem

1. Let

At,λ = Qt,λ

[
λ−1/2X In

]
,

Qt,λ =
[
(Ip − exp(−tX⊤X))(X⊤X)+ − (X⊤X + λIp)−1]X⊤.

Then, the law of the early-stopped Langevin dynamics (13), at the stopping time t∗ = 1/λ and under
the initialization β0 = 0, satisfies

W 2
2 (βt∗ , β(λ) | y) ≤

p∑
i=1

(Asi) ∧ (Bλ)
si(si + λ) + w,

with probability (taken over the randomness in y) at least

1 − 2 exp
[
−c min

(
w2

∥At,λ∥4
4

,
w

∥At,λ∥2
∞

)]
,

for a universal constant c > 0 and all w > 0.

In light of Theorem 1 and Corollary 1, a natural question is under what conditions the early-
stopped Langevin iteration on the likelihood can reach the target posterior faster than the standard
Langevin iteration on the posterior. To make the question precise, we can equivalently ask for
sufficient conditions under which the early-stopped dynamics βt∗ , i.e., the dynamics at time t∗ = 1/λ,
attains smaller Wasserstein distance to β(λ) | y than the standard dynamics β̃t∗ does, at the same
time t∗. Because the computational cost of the two discrete time iterations is comparable (both cost
O(np), when n ≫ p), this would imply that the early-stopped iteration is more efficient than the
standard iteration, given an a priori fixed computational budget. In the following lemma, we spell out
sufficient conditions for the early-stopped dynamics to be more efficient than the standard dynamics.
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Lemma 1 (Sufficient condition for faster convergence). Assume the same conditions as in Theorem
1. Write x = L/λ, and fix the prior precision λ so that it satisfies

λ ≤ exp(−2[x + 1])
A

.

Initialize the standard continuous-time Langevin dynamics (10) with β̃0 = 0. Then, for t∗ = 1/λ,

Eβ(λ),y

[
W 2

2 (βt∗ , β(λ) | y)
]

≤ Eβ(λ),y

[
W 2

2 (β̃t∗ , β(λ) | y)
]
.

That is, the early-stopped Langevin dynamics reaches the target posterior faster than the standard
Langevin dynamics does. The range of λ prescribed by the lemma calls for the prior to be relatively
concentrated, which is an important regime in practice. However, in our experiments to come in
Section 7, we observe faster convergence for a wide range of λ (i.e., for both small and large values of
λ).

4.1 The implicit prior, and empirical Bayes
Thus far, we have argued that early-stopped Langevin dynamics, using only the likelihood fy|β(λ),
can be more efficient than standard Langevin dynamics, which uses the likelihood as well as the prior
fβ(λ). Therefore, our claim may appear a little surprising, as we might worry that early stopping
is, in a sense, “discarding” information. We think there are two possible resolutions to this tension.
First, the early-stopped Langevin iteration (6) does in fact use information about the prior through
the choice of the stopping time t∗ = 1/λ.

On the other hand, it turns out that early stopping can be seen as operating with a certain
prior, implicitly; we give some details now, in order to bring out the connection. From the explicit
representation of the solution βt to the early-stopped process, given in (14), we can see that βt may
be decomposed into two parts: a deterministic part γt, and a white noise part. Moreover, Lemma 4
in Ali et al. (2020) shows that the deterministic part can be seen as the solution to a quadratically
regularized least squares problem, i.e., we have that

γt = arg min
β∈Rp

{
1
2∥y − Xβ∥2

2 + β⊤Qtβ

}
, where Qt = V S

(
exp(tS) − I

)−1
V ⊤,

the columns of V ∈ Rn×p contain the eigenvectors of X⊤X, and the diagonal entries of S ∈ Rp×p

contain the eigenvalues with zeros everywhere else. But this is equivalent to finding the maximum a
posteriori estimate under the prior

β ∼ Normal(0, σ2Q−1
t ),

instead of the prior in (3). The (implicit) prior on β here has an intriguing interpretation: it depends
not only on t, but also on the data matrix X (through its empirical covariance matrix), reminiscent
of empirical Bayes-type methods (Ghosh et al., 2006; Efron, 2012).

5 Sampling from a generic posterior
5.1 Strongly log-concave likelihood
In this section, we move beyond the canonical Gaussian setup, and assume a bit more for the posterior
of interest. Namely, we consider a data-generating process where the prior is still normal, but the
likelihood need not be, as in

β(λ) ∼ Normal(0, Ip/λ) and y | β(λ) ∼ fy|β(λ)(β(λ); y), (15)

10



where in particular the log likelihood −Fy|β(λ) = log fy|β(λ) must satisfy the following two assumptions.
Here and throughout the paper, we generally omit any normalizing factors when writing down densities,
in order to keep the notation light.

Assumption A1 (Lipschitz smoothness). The gradient of the log likelihood ∇ log fy|β(λ) is L-
Lipschitz continuous uniformly in y ∈ Rn, i.e., there exists some L > 0, such that for all θ1, θ2 ∈ Rp,
y ∈ Rn

∥∇ log fy|β(λ)(θ1; y) − ∇ log fy|β(λ)(θ2; y)∥2 ≤ L · ∥θ1 − θ2∥2.

For a positive integer i and two i × i symmetric matrices M1, M2, we write M1 ⪰ M2 when
M1 − M2 is positive semi-definite.

Assumption A2 (Strong log-concavity). The likelihood fy|β(λ)(·; y) is m-strongly log-concave
uniformly in y ∈ Rn, i.e., there exists some m > 0, such that for all θ ∈ Rp, y ∈ Rn

∇2 log fy|β(λ)(θ; y) ⪰ m · Ip.

Assumptions A1 and A2 are both reasonably broad, and also standard in the literature on
optimization (Nesterov, 2003) as well as sampling; see, e.g., Cheng and Bartlett (2018); Lee et al.
(2019); Karagulyan and Dalalyan (2020). For instance, they clearly capture the Gaussian setting of
(13), though the bounds we develop based on these assumptions are looser than the one we presented
in, say, Theorem 1. In the special Gaussian setting, they concide with the previous definitions of
L, m. Moreover, these conditions imply (see, e.g., Proposition 6.1 in Pavliotis (2014)) that Langevin
dynamics (11) converges to an invariant distribution π.

With these assumptions in hand, we can prove the following result, controlling the Kullback-
Leibler divergence between the laws of βt, as in (11), and the posterior β(λ) | y, arising from (15).
In what follows, we always write µ for the mean of the invariant distribution π of the dynamics (11).

Corollary 2 (Bound on expected KL divergence, strongly log-concave likelihood). Assume the data
model (15), as well as conditions A1 and A2, stated above. Define the constants

aλ = Lp
2λ + p

2 log λ
m+λ , m′

λ = m + λ,

b = 2p
m + 2∥µ∥2

2, bλ = 2p
m ·

(
L−λ

λ + log λ/m

)
.

Then, the law of early-stopped Langevin dynamics (11), at the stopping time t∗ = 1/λ and under the
initialization β0 ∼ Normal(0, Ip/λ), satisfies

Eβ(λ),y

[
Dkl(βt∗∥β(λ) | y)

]
≤ aλ · exp(−m′

λ/λ) + bλ2

2 · 1 − exp(−m′
λ/λ)

m′
λ

+ bλλ2

2 ·
exp

(
(m′

λ − 2m)/λ
)

− 1
m′

λ − 2m
· exp(−m′

λ/λ).

We prove a more general result in the appendix (see Theorem 4) that implies both the above
result and a more general one to come (see Corollary 3 below) as special cases, but we present the
results separately for readability. A few remarks on Corollary 2 are in order.

• The bound in Corollary 2 is more general than the bound in Theorem 1; of course, it is also
somewhat looser. We investigate this trade-off through several numerical experiments in Section
7.

• The Gaussian initialization in the above bound, which is different from that in Theorem 1, is
due to technical considerations arising in the proof; see the proof of Theorem 1 in the appendix
for a discussion.
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• The proof strategy is essentially to control the derivative,
dDkl(βt∥β(λ) | y)

dt
,

by using tools from the classical theory of gradient flows; see Ambrosio et al. (2008) for a
treatment of this subject. We then apply Gronwall’s inequality in order to obtain control on
the quantity Dkl(βt∥β(λ) | y) itself. Finally, we simplify the resulting bound, by using the
correspondence t = 1/λ, and working out bounds on a few intermediate quantities, e.g., (i)
Eβ(λ),y∥βt∥2

2, (ii) Dkl(β0∥β(λ) | y), and (iii) the Kullback-Leibler divergence between β0 and
the stationary distribution of the early-stopped process.

• As λ → 0, it can be checked that the bound converges to zero, as expected. Similarly, as m
grows, the log density has more curvature, and we can see that the bound shrinks in this case,
too (as expected). On the other hand, a weakness of this bound is that it does not converge
to zero, as λ → ∞. Later, we give a more sophisticated bound that is sharper, but is less
transparent than the current bound; see Theorem 2.

5.1.1 A transportation cost inequality

Finally, converting a bound on the Kullback-Leibler divergence into the Wasserstein distance follows
readily, provided the posterior satisfies a transportation cost (also often referred to as a Talagrand-
type) inequality (Talagrand, 1996; Otto and Villani, 2000; Boucheron et al., 2013), described next.

We say that the probability measure P satisfies a transportation cost inequality with constant α,
if for all probability measures Q ≪ P absolutely continuous with respect to P ,

W 2
2 (Q, P ) ≤ 2

α
· Dkl(Q∥P ). (16)

Talagrand (1996) first proved an inequality of this type for Gaussian random variables; the result
was later extended by Otto and Villani (2000) to any probability measure satisfying a log Sobolev
inequality, or equivalently being strongly log-concave, which is certainly the case in (3). Since
Assumption A2 implies the transportation cost inequality (16) is satisfied with constant m′

λ, we
immediately obtain a bound on the Wasserstein distance, i.e., we have

Eβ(λ),y

[
W 2

2 (βt∗ , β(λ) | y)
]

≤ 2
m′

λ

· Eβ(λ),y

[
Dkl(βt∗∥β(λ) | y)

]
.

The inequality (16) and the log-Sobolev inequality turn out to be critical for the remainder of
this paper, and we return to them in the next section.

5.2 Beyond a strongly log-concave likelihood
Now we additionally assume that the target posterior satisfies a log Sobolev inequality with constant
α > 0. We also relax Assumption A2, allowing the density to only be strongly log-concave outside of
a neighborhood of the prior mean. These requirements are stated formally below.
Assumption A3 (Strong log-concavity outside of a ball). There exists a p-dimensional Euclidean
ball Bp

0(R) centered around zero with radius R > 0, such that Assumption A2 is satisfied when Θ
restricted to dom(fy|β(λ)(·; y)) \ Bp

0(R).
Assumption A4 (Log Sobolev inequality). The likelihood fy|β(λ)(·; y) satisfies a log Sobolev
inequality, i.e., there exists some constant α > 0, such that for all square integrable and Lipschitz
smooth functions g : Rp 7→ R, taking expectations with respect to the random vector W ∈ Rp,
W ∼ fy|β(λ),

E
[
g2(W ) log g2(W )

]
− E

[
g2(W ) logEg2(W )

]
≤ E

[ 2
α

· ∥∇g(W )∥2
2

]
.
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The largest α satisfying the above inequality is called the log Sobolev constant. This inequality
was first established in Gross (1975), for Gaussian random variables. It was later shown by Bakry and
Émery (1985) to hold for any random variable following a strongly log-concave distribution. A log
Sobolev inequality of the above type essentially relates the entropy of a random variable to its gradient,
and therefore bounds the fluctuations of the random variable, making its appearance here relatively
natural. The log Sobolev inequality also has deep connections to concentration of measure; via the
Efron-Stein inequality, maximal inequalities for stochastic processes, and isoperimetric inequalities
(see, e.g., Boucheron et al. (2013), for a review). A convenient feature of the log Sobolev inequality is
that it is preserved under both products and Lipschitz transformations. It also always implies the
inequality,

Dkl(P∥Q) ≤ 1
2α

· EP

∥∥∥∥∥∇ log dP

dQ

∥∥∥∥∥
2

2

, (17)

which we exploit in the proof of our result. The inequality (17) can be seen by substituting
g =

√
dP/dQ, and then performing some algebra. We state our KL divergence result under these

assumptions next.

Corollary 3 (Bound on expected KL divergence, non-strongly-log-concave posterior). Assume the
data model (15), as well as conditions A1, A3, and A4, given above. Define the constants

aλ = Lp
2λ , m′

R,λ = λ,

bR = 16p
α log 2L/m + 512R2L3

αm2 + 2∥µ∥2
2, bR,λ = 2p

α ·

(
L−λ
2λ + 1

2 log 2λ
m + 32R2L3

pm2

)
.

Then, the law of early-stopped Langevin dynamics (11), at the stopping time t∗ = 1/λ and under the
initialization β0 ∼ Normal(0, Ip/λ), satisfies

Eβ(λ),y

[
Dkl(βt∗∥β(λ) | y)

]
≤ aλ · exp(−m′

R,λ/λ) + bRλ2

2 ·
1 − exp(−m′

R,λ/λ)
m′

R,λ

+ bR,λλ2

2 ·
exp

(
(m′

R,λ − 2α)/λ
)

− 1
m′

R,λ − 2α
· exp(−m′

R,λ/λ).

The difference between the bounds given in Corollaries 3 and 2 lies in the definitions of their
respective constants. Crucially, the bound from Corollary 2 does not simply follow from setting
R = 0 in Corollary 3.

5.2.1 A discrete time result

Now we return to a point raised at the beginning of the paper, and translate Corollary 3 presented
above into discrete time.

Corollary 4 (Bound on expected W 2
2 , discrete time). Assume the same conditions as in Corollary

3. Let Lξ be an arbitrarily small constant, c =
√

2, and additionally define the constants

η = min
{

m
2 , 1

8R2

}
exp

(
− 7

12 LR2) , ϵ̂ ≤
(

16L
η

)
exp(7LR/12) R

LR2/4+1 .

Then, there exists a coupling between the laws of discrete and continuous-time early-stopped Langevin
dynamics β(k) and βt, as in (6) and (11), respectively, with step size satisfying

τ ≤ min


η2 ϵ̂2

512√
pL2 exp( 7L

2R2 )
2ηϵ̂√

p2/λL2 exp( 7L
4R2 ) ,
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and initialized at β(0) = β0 with E
[
∥β0∥2

2
]

≤ p
λ , such that β(k) and βt satisfy at k∗ = ⌈1/(τλ)⌉

iterations and time t∗

E
[
∥β(k∗) − βt∗∥2

]
≤ ϵ̂.

The proof of the result follows by controlling the discretization error term in (12). Fortunately,
this is possible, by extending a recent result due to Cheng et al. (2020) coupling the laws of the
Langevin iteration with the target posterior β(λ) | y; see Section 10.1.6 in the appendix for further
details.

5.3 A sharper bound
We now present a final bound that sharpens the previous continuous-time results. On the flipside,
the bound is less transparent than our earlier bounds. Roughly speaking, we prove the new bound by
optimizing the stopping time t∗ in order to make a certain functional arising in the proof of the result
as small as possible; therefore, the new bound also does not explicitly assume the relation t∗ = 1/λ.

Theorem 2 (Sharper bound on expected KL divergence, non-strongly-log-concave posterior). Assume
the same conditions as in Corollary 3, and recall the definitions of aλ, m′

R,λ, bR, bR,λ from that result.
For a ∈ (0, 2), define,

m′′
R,λ,a = 2(1 − a/2)m′

R,λ, vR,λ,a = bR,λλ2

2a(m′′
R,λ,a

−α) ,

qR,λ,a = bRλ2

2m′′
R,λ,a

a , rR,λ,a = aλ − qR,λ,a − vR,λ,a.

Then, the law of early-stopped Langevin dynamics (11), at the stopping time

t∗ =
{

max
(

1
α−m′′

R,λ,a
· log

(
−αvR,λ,a

rR,λ,am′′
R,λ,a

)
, 0
)

, if αvR,λ,a

rR,λ,am′′
R,λ,a

< 0
∞, otherwise

and under the initialization β0 ∼ Normal(0, Ip/λ), satisfies

Eβ(λ),y

[
Dkl(βt∗∥β(λ) | y)

]
≤ inf

a∈(0,2)
G(a; λ, L, p, m),

where
G(a; λ, L, p, m) = qR,λ,a + rR,λ,a · exp(−m′′

R,λ,at∗) + vR,λ,a · exp(−αt∗).

6 Monte Carlo integration
A related problem, arising in the context of Bayesian inference but also prevalent throughout applied
mathematics, is to compute a (possibly very high-dimensional) conditional expectation, with respect
to a given prior distribution. Formally, we seek to approximately compute∫

β

g(β)fβ(λ)|y(β)dβ = Eβ(λ)|y
[
g(β(λ))

]
, (18)

where g : Rp 7→ R is a given Lipschitz continuous “test” function. In general, computing the
expectation in (18) is difficult. The usual approach is to use some variation of the standard Monte
Carlo method, which in its most basic form performs the following two steps:

draw: β(i1), . . . , β(iℓ) ∼ fβ(λ)|y;
compute: 1

ℓ

∑ℓ
k=1 g(β(ik)),
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where ℓ is the number of Monte Carlo samples. Depending on the inferential tool, carrying out the
first step above can be very expensive.

In the spirit of the present paper, so long as the target posterior arises from the required normal
prior, as in (15), we consider instead using early stopped Langevin dynamics on the likelihood in the
first step above. Following directly from (6), we propose the numerical integration scheme appearing
below:

draw: β(k) = β(k−1) + τk · ∇ log fy|β(λ)(β(k−1)) +
√

2τk · z(k), k = k∗, . . . , k∗ + ℓ;
compute: 1

ℓ

∑k∗+ℓ
k=k∗ g(β(k)),

(19)

where τk, k = k∗, . . . , k∗ + ℓ, is a sequence of carefully chosen step sizes. In words, the above scheme
runs the early-stopped Langevin iteration until it has converged to the target posterior, draws samples
near the posterior mode, and then uses the associated sample average to estimate (18). It is critical
to work in discrete time; therefore, the choice of step sizes is important, so that the early-stopped
process does not diverge from the target posterior. We may use a fixed step size up until the stopping
time k∗ = ⌈1/(τλ)⌉, followed by step lengths that are square summable but not summable afterwards,
e.g.,

τj =
{

τ, for j ≤ k∗, where τ < 1/L

τ/j, for j = k∗ + 1, . . . , k∗ + ℓ.
(20)

The following result, recalling the constants that were defined in Corollary 3, bounds the mean
squared error of the above integration scheme, assuming fixed step sizes. We will abbreviate
β(1:k) = (β(1), . . . , β(k)).

Theorem 3 (Monte Carlo integration mean squared error). Assume the same conditions as in
Corollary 3. Also, assume that g : Rp 7→ R is Q-Lipschitz continuous. Fix some number of iterations
k ≥ k∗, and a step size τ < 1/L. Then, the early-stopped Monte Carlo integration scheme (19),
under the initialization β(0) ∼ Normal(0, Ip/λ) satisfies the following inequalities.

• Under conditions A1 and A2:

Eβ(λ),y,β(1:k)

[(
1
k

k∑
j=1

g(β(j)) − Eβ(λ)|y
[
g(β(λ))

])2]

≤ 2Q2O(d3/2τ1/2) + 4Q2

m′
R,λk

k∑
j=1

(
aλ · exp(−m′

λtj)

+ bλ2

2 · 1 − exp(−m′
λtj)

m′
λ

+ bλλ2

2 ·
exp

(
(m′

λ − 2m)t
)

− 1
m′

λ − 2m
· exp(−m′

λtj)
)

,

(21)

for any tj ∈ [jτ, (j + 1)τ).

• Under conditions A1, A3, and A4:

Eβ(λ),y,β(1:k)

[(
1
k

k∑
j=1

g(β(j)) − Eβ(λ)|y
[
g(β(λ))

])2]

≤ 2Q2O(d3/2τ1/2) + 4Q2

m′
R,λk

k∑
j=1

(
aλ · exp(−m′

R,λtj) + bRλ2

2 ·
1 − exp(−m′

R,λt)
m′

R,λ

+ bR,λλ2

2 ·
exp

(
(m′

R,λ − 2α)tj

)
− 1

m′
R,λ − 2α

· exp(−m′
R,λtj)

)
,

(22)
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for any tj ∈ [jτ, (j + 1)τ).

For technical reasons, we assume fixed step sizes in Theorem 3. However, we investigate diminishing
step sizes, as in (20), through our experimental work to come in the next section. The result follows
by relating the criterion (21) to the 1-Wasserstein distance via its dual representation, then using
a comparison inequality to relate this distance to the 2-Wasserstein distance, and finally invoking
Corollaries 3 and 4 appearing earlier in order to obtain the result.

7 Numerical simulations
We present several numerical examples supporting our general theory. Throughout, we focus on
comparing the standard and early-stopped Langevin iterations, i.e., (5) and (6), by measuring the
relative sampling efficiency, defined in (9). Importantly, we also check the tightness of the bounds we
presented earlier, i.e., those from Sections 4, 5, and 6. We begin our presentation of the numerics by
revisiting, and expanding on, the Gaussian data example that was first presented in Section 2, before
turning to other Bayesian generalized linear models. Then, in line with Corollary 3 presented above,
we show the results of an experiment involving a non-strongly-log-concave likelihood. Finally, we
turn to experiments checking the accuracy of the early-stopped Monte Carlo integration scheme in
(19).

7.1 Bayesian generalized linear models
7.1.1 Relative sampling efficiency

Gaussian regression. We start with the canonical Gaussian setup from Sections 2 and 4. For
these experiments, we generate β(λ) and y | β(λ) by following the generative model in (3), for
different values of the prior precision strength λ ∈ {0.1, 0.3, 0.5} and a fixed noise variance σ2 = 1. To
form the data matrix, X, we first draw two random orthogonal matrices U ∈ Rn×p and V ∈ Rn×p,
and set the diagonal entries of S ∈ Rp×p as Sii =

√
|zi| with zi

iid∼ Normal(0, 1), for i = 1, . . . , p.
Then, we form X = USV ⊤. Here and in what follows, we always set the sample size n = 500, and
the ambient dimension p = 10. This construction implies X has full column rank, almost surely.
We experiment with both well and ill-conditioned data matrices (with condition numbers 4 and 40,
respectively), by scaling maximum value of S suitably.

Now we simulate the stochastic differential equations (10), (11), corresponding to the standard
and early-stopped Langevin dynamics, respectively, and compute the relative sampling efficiency (9)
in closed form, using formulas detailed in the proofs in the Appendix. We plot the relative sampling
efficiency vs. time t, for different draws of the singular values, in Figure 2. We also show the stopping
time t∗ = 1/λ, for each value of λ, with a dot in the figure. Throughout, our plots show the average
of 25 trials. We can see that the relative sampling efficiency spikes near t∗ and is small otherwise,
just as our theory predicts (and as in Figure 1).

Logistic regression. We also consider a Bayesian logistic regression setup, where we generate:

β(λ) ∼ Normal(0, Ip/λ), and yi | β(λ) ∼ Bernoulli(qi), where qi = 1
1 + exp(−x⊤

i β)
.

To ensure the likelihood is strongly log-concave, we multiply it by (another) normal distribution
having mean zero and covariance Ip/γ, γ > 0. Equivalently, we assume that β(λ) follows a normal
distribution with covariance

(1/λ + 1/γ) · Ip,

where γ is small, e.g., γ = 0.01. Note that the likelihood is strongly log-concave, but not a density,
which makes it an interesting test case. In this case, there is no closed-form expression for the
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Figure 2: The relative sampling efficiency, defined in (9), of the early-stopped Langevin Monte Carlo
dynamics (6) over the standard Langevin Monte Carlo dynamics (5), for Bayesian linear regression
(top row), logistic regression (second row), Poisson regression (third row), and a non-strongly-log-
concave posterior (fourth row). The plots show the efficiencies for various prior precision strengths
λ ∈ {0.1, 0.3, 0.5}, as well as for a well-conditioned data matrix X (left column) and an ill-conditioned
one (right column). Throughout, the efficiency is large when the time t ≈ 1/λ, and small otherwise.
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Wasserstein distance, so we compute it numerically using a linear time version of the Sinkhorn
algorithm (Sinkhorn and Knopp, 1967; Cuturi, 2013; Peyré and Cuturi, 2019) due to Altschuler et al.
(2017), i.e., we compute

W2(βt∗ , β(λ) | y) = inf
{

tr(P ⊤C) : P ∈ Rℓ×ℓ
+ , P1 = r, P ⊤1 = c

}
,

where r ∈ Rℓ, c ∈ Rℓ are given vectors with positive entries that sum to one and C ∈ Rℓ×ℓ
+ is a

suitable cost matrix. Here each element of r and c is 1/l, where l is the number of samples and the
i, jth element of C stores the euclidean distance between ith and jth sample. The second row of
Figure 2 shows the relative sampling efficiencies, where we see the same trend as in the Gaussian
case.

Poisson regression. We again follow a setup similar to what was done above, except here we
have:

yi | β(λ) ∼ Categorical(q1, . . . , qℓ), where qj =
exp

(
yix

⊤
i β − exp(x⊤

i β)
)

yi!
, for j = 1, . . . , ℓ.

The third row of Figure 2 shows the corresponding results, where we can see the same pattern as
mentioned above. As a whole, these plots reveal that the laws of βt and β(λ) are, in fact, close at the
optimal stopping time t∗, and that this behavior is seemingly robust across different data models.

7.1.2 Tightness of bounds

In Figures 3 and 4 we investigate the tightness of our bounds, i.e., Theorem 1, Corollary 3, and
Theorem 2, respectively, for the three data models above (Gaussian, logistic, and Poisson regression).
To put all the problems on the same scale, we plot the relative log error in Figure 4,∣∣∣ log Ŵ − log W ∗

log W ∗

∣∣∣, (23)

where Ŵ denotes the numerical value of either of our bounds, and

W ∗ = Eβ(λ),y

[
W 2

2 (βt∗ , β(λ) | y)
]
.

Figure 3 shows the bound presented in Theorem 1, for various values of λ, in the same Bayesian
linear regression setup that was described above. It is clear that the bound is extremely sharp.

Turning to the general case, we plot both Corollary 3 and Theorem 2 in Figure 4. Here, we
see that Theorem 2 is in fact sharper than Corollary 3; notably, for Poisson regression, it appears
to be a few orders of magnitude sharper. Having said that, both our bounds do a good job on
the Gaussian and logistic problems, where we know the Lipschitz constant L of the log likelihood,
required to compute our bounds. However, note that the Poisson regression log likelihood is not
globally Lipschitz smooth, only when restricted to compact sets. Therefore, for Poisson regression,
we use as a numerical estimate of L the maximum spectral norm of the Hessian of the log likelihood
computed over ten pilot simulations, which explains some of the apparent looseness of the bounds.

7.2 Non-strongly-log-concave posterior
We now look at the case when the likelihood function is m-strongly log-concave outside a ball of
radius R, but not necessarily convex otherwise. Fix some R and a small constant ϵ > 0 (in our
experiments, we set R = 4 and ϵ = 0.01). Now consider the negative log likelihood given, for β ∈ R,
by

Fy|β(β; y) = 1
n

n∑
i=1

[(
β2 − R2 + 1

)
sin2 (yi)

]
1β2≥R2 + ϵβ2 (24)
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Figure 3: The bound from Theorem 1 (blue) vs. the actual value (red) of the squared 2-Wasserstein
distance between the law of early-stopped Langevin dynamics (13) at the optimal stopping time
t∗ = 1/λ and the target posterior β(λ) | y, for Bayesian linear regression (4). The plots show the
values of the bound and ground truth, for various λ, as well as for a well-conditioned data matrix X
(left) and an ill-conditioned one (right). The bound given by Theorem 1 is always very sharp.

Figure 4: The relative log error of the bounds from Corollary 3 (blue) and Theorem 2 (red), for
Bayesian linear regression (first column), logistic regression (second column), Poisson regression
(third column), and a non-strongly-log-concave posterior (fourth column). The plots show the values
of the two bounds for various λ, as well as for a well-conditioned data matrix X (top row) and an
ill-conditioned one (bottom row).
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+
[(

sin
(
β2 − R2)+ cos

(
β2 − R2)) sin2 (yi)

]
1β2<R2 .

The gradient and Hessian of Fy|β(β; y) with respect to β are, almost surely with respect to Lebesgue
measure on R,

∇Fy|β(β; y) = 1
n

n∑
i=1

[
2β sin2 (yi)

]
1β2≥R2 + 2ϵβ

+
[(

2β cos
(
β2 − R2)− 2β sin

(
β2 − R2)) sin2 (yi)

]
1β2<R2 ,

and

∇2Fy|β(β; y) = 1
n

n∑
i=1

[
2 sin2 (yi)

]
1β2≥R2 + 2ϵ +

[(
2 cos

(
β2 − R2)− 2 sin

(
β2 − R2)) sin2 (yi)

]
1β2<R2

−
[(

4β2 sin
(
β2 − R2)+ 4β2 cos

(
β2 − R2)) sin2 (yi)

]
1β2<R2 .

Hence Fy|β(β; y) is (2 + 8ϵR2)-Lipschitz smooth, and satisfies Assumption A1. When β2 ≥ R2, the
negative log likelihood is strongly convex with parameter 2ϵ, so it also satisfies Assumption A3, but
it is not convex in the region {β : β2 < R2}. From Proposition 1 in Ma et al. (2019b), we get the
function satisfies Assumption A4 with α ≥ ϵ exp(−16(2 + 8ϵR2)R2) . See Figure 5. Now to draw
samples from the associated posterior, we simply draw β ∼ Normal(0, 1/λ) from the prior, then draw
y from the likelihood, which is proportional to exp(−Fy|β(β; y)).

The bottom row of Figure 2 shows the relative sampling efficiencies, and the last column of Figure
4 investigates the tightness of Corollary 3 and Theorem 2; the results are roughly similar to those for
Poisson regression, which is encouraging.

7.3 Quadrature
Finally, we investigate the accuracy of the early-stopped quadrature scheme, described in (19).
We consider the Euclidean norm z 7→ ∥z∥2 as our test function. Figure 6 shows the Monte Carlo
integration error (21) vs. the number of iterations k. We can clearly see that the early-stopped
scheme outperforms the standard Langevin-based scheme. The results for this test function are
nearly identical to those for the squared Euclidean norm, i.e., z 7→ ∥z∥2

2 (not shown), which is of
course not Lipschitz continuous, and thus goes beyond the assumptions covered by Theorem 3.
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Figure 5: The negative log likelihood from (24).

Figure 6: The Monte Carlo integration error (21) vs. the number of iterations taken by the early-
stopped numerical integration scheme (19), for Bayesian linear regression (4) with the prior precision
strength λ = 0.1. Here, we use the Euclidean norm as our test function. The left panel shows the
results for a well-conditioned design, and the right shows the results for an ill-conditioned one.
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8 Conclusion
An exciting line of work, going back to Jordan et al. (1998) and continuing on recently through
Dalalyan (2017b,a); Ma et al. (2019b); Wibisono (2018); Ma et al. (2019a); Cheng et al. (2019, 2020);
Mou et al. (2021), has uncovered a number of intriguing connections between sampling algorithms and
classical methods for optimization. These connections are useful, because they imply we can move
ideas back and forth, i.e., from optimization to sampling, and from sampling back to optimization. As
we see it though, implicit regularization has not really benefited yet from this sort of cross-pollination,
and remains curiously underexplored. In the current paper, we sought to port ideas from implicit
regularization to sampling, and carefully studied an early-stopped variant of the popular standard
Langevin Monte Carlo iteration. We gave theoretical and empirical backing to the idea that an
early-stopped variant of the usual Langevin Monte Carlo iteration can converge to a target posterior
faster than the standard Langevin iteration.

There are a few directions to pursue as part of future work that would be interesting. First,
it is clear that understanding the relationships between other, non-normal, priors and algorithms
would be useful. A related question we might ask that seems interesting is: does putting a prior on
the scale (i.e., not just the location, as we have done here) correspond to any particular algorithm?
Examining and gaining a deeper understanding of the statistical properties—say, the risk—of the
early-stopped Langevin iterates, i.e., going beyond sampling and numerical integration, certainly also
appears within reach. More broadly though, we hope our paper motivates the continued exploration,
and application, of ideas from implicit regularization to sampling.
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10 Appendix
10.1 Proofs for Section 4
Our general strategy for proving the results in this section is (as mentioned in the main paper) to
exploit the fact that in the canonical Gaussian setup from (3), both the linear stochastic processes
(10), (11), as well as the posterior (4), have closed-form expressions that can simplify many of
the arguments. Key to these arguments is the following result from Vatiwutipong and Phewchean
(2019), collecting together several useful properties of a special kind of linear stochastic process, the
Ornstein-Uhlenbeck process, which we invoke frequently.

Lemma 2 (Useful properties of the Ornstein-Uhlenbeck process (Vatiwutipong and Phewchean,
2019)). Let (βt) ∈ Rp be a p-dimensional Gaussian process satisfying

dβt = M [µ − βt]dt + ΓdWt, (25)

where M, Γ ∈ S
p
++ and µ ∈ Rp, so that the process (βt) is an Ornstein-Uhlenbeck process. Then, for

t ∈ [0, T ] with T > 0, the unique solution to (25) is given by

βt = exp(−Mt)β0 + [Ip − exp(−Mt)]µ +
∫ t

0
exp

(
(s − t)M

)
ΓdWs, (26)

which has the following properties:

• E(βt) = exp(−Mt)β0 + [Ip − exp(−Mt)]µ;

• Cov(βt) =
∫ t

0 exp(M(s − t))ΓΓ⊤ exp(M⊤(s − t))ds;

• vec(Cov(βt)) = (M ⊕ M)+[Ip − exp((−M ⊕ M)t)]vec(ΓΓ⊤).

Here, A ⊕ B denotes the Kronecker sum of A and B, vec(A) denotes the usual vectorization of
the matrix A, A+ denotes the Moore-Penrose pseudo-inverse of A, and exp(A) denotes the matrix
exponential of A.

Now we carry on with proving the results of Section 4.

10.1.1 Proof of Theorem 1

Noting that in the Gaussian setting the early-stopped process (13) is in fact a Gaussian process of
the form (25), we may apply Lemma 2 above with M = X⊤X and µ = (X⊤X)+X⊤y, giving

βt ∼ Normal
(

[Ip − exp(−tX⊤X)]X+y, (X⊤X)+[Ip − exp(−2tX⊤X)]
)

, (27)

conditional on β(λ), y.
Now it is straightforward to check, using an eigendecomposition, that the covariance matrices

associated with the early-stopped process, as in (27), and the posterior, as in (4), commute; therefore,
we may invoke a well-known result (see, e.g., Proposition 7 in Givens and Shortt (1984), or Takatsu
(2011)) characterizing the squared 2-Wasserstein distance between two normals,

W 2
2 (βt, β(λ)) =

∥∥∥[(Ip − exp(−tX⊤X))(X⊤X)+ − (X⊤X + λI)−1]X⊤y
∥∥∥2

2︸ ︷︷ ︸
T1

+
∥∥∥ [(X⊤X)+(Ip − exp(−2tX⊤X))

]1/2 − (X⊤X + λI)−1/2
∥∥∥2

F︸ ︷︷ ︸
T2

, (28)
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again conditional on β(λ), y.
As a result, we can see that bounding the quantity of interest, i.e., Eβ(λ),y[W 2

2 (βt∗ , β(λ) | y)],
boils down to tightly controlling the two terms associated with the means and covariances above, i.e.,
T1, T2, respectively. The helper Lemmas 3, 4, appearing below, give the required control, and show
that

Eβ(λ),y

[
W 2

2 (βt, β(λ) | y)
]

=
p∑

i=1

h(si; t, λ)
si

, (29)

where s1, . . . , sp denote the singular values of X⊤X, and we defined the function

h(x; t, λ) =
[√

1 − exp(−2tx) −
√

x

x + λ

]2

+ (x/λ + 1)
[

λ

x + λ
− exp(−tx)

]2
.

We actually prove a somewhat more general result here than the one stated in the theorem, which
reduces to the stated result as a special case. Here, instead of simply plugging the parametrization
t = 1/λ into (29) and simplifying, we consider a more flexible parametrization, where t = c/λ, for
some fixed c > 0. We seek the value of c making (29) as small as possible; simply setting c = 1
recovers the result given in the main paper.

Therefore, substituting the parametrization t = c/λ, and making a simple change of variables, in
(29), yields

h(x; t, c/t) =
[√

1 − exp(−2tx) −
√

x

x + c/t

]2
+ (xt/c + 1)

[
c/t

x + c/t
− exp(−tx)

]2

=
[√

1 − exp(−2tx) −
√

tx

tx + c

]2

+ (tx/c + 1)
[

c

tx + c
− exp(−tx)

]2

=
[√

1 − exp(−2z) −
√

z

z + c

]2

+ (z/c + 1)
[

c

z + c
− exp(−z)

]2
:= H(z; c).

We aim to solve a variational problem for each summand, i.e., we want to find c such that A, B are
small in the expression

H(z; c) ≤ Az ∧ Bc

z + c
.

Now write I(z; c) = (z + c)H(z; c), so that

I(z; c) =
{√

[1 − exp(−2z)] · (z + c) −
√

z
}2

+ [c − (z + c) exp(−z)]2 /c.

In Figure 7, we plot I(z; c)/c with c = 1, i.e., I(z; 1). We can see that the optimal A := Ac, B := Bc

must satisfy

Ac ≥ sup
z≥0

I(z; c)/z,

Bc ≥ sup
z≥0

I(z; c)/c.

In principle, the strategy we pursued above works for all c > 0. However, we may simply put
c = 1, and numerically maximize both z 7→ I(z; 1)/z, and z 7→ I(z; 1)/c, showing that A = A1 is at
most 0.2379, and that B is upper bounded by 1.026, respectively, which are evidently sharp enough
for our purposes. Therefore, we have shown that

Eβ(λ),y

[
W 2

2 (βt, β(λ) | y)
]

≤
p∑

i=1

Asi ∧ B/t

si(si + 1/t) ,
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Figure 7: The function I(z; 1), used in the proof of Theorem 1.

and since we assumed λ = c/t, with c = 1, the claimed result follows.
We make a couple of additional remarks on the result.

• In our proof of the result above, we assumed the initialization β0 = 0, but another fairly natural
initialization is β0 ∼ Normal(0, Ip/λ); here, we show that the same result still goes through,
when working with this alternative initialization, just with minor modifications.
Let X = US1/2V ⊤ be a singular value decomposition. Then, looking back at (29), we can
calculate, conditional on β(λ), y, that

T1 =
∥∥∥ exp(−tX⊤X)β(λ) + [(Ip − exp(−tX⊤X))(X⊤X)+ − (X⊤X + λI)−1]X⊤y

∥∥∥2

2

=
∥∥∥V exp(−tS)V ⊤β(λ) + V MU⊤y

∥∥∥2

2

=
∥∥∥ exp(−tS)V ⊤β(λ) + MU⊤y

∥∥∥2

2

=
p∑

i=1
(exp(−tsi)v⊤

i β(λ) + Miiu
⊤
i y)2.

Here, M = M(S, λ, t) denotes a diagonal matrix depending on S, λ, t, identified above. Therefore,
expanding the square, we have that

T1 =
p∑

i=1
|u⊤

i y|2
[

1 − exp(−tsi)√
si

−
√

si

si + λ

]2
+ |v⊤

i β(λ)|2 exp(−2tsi) + 2u⊤
i y · v⊤

i β(λ) · Ci,

for some constants Ci, i = 1, . . . , p, that do not depend on β(λ) or y. Taking expectations over
β(λ), y shows that the cross terms vanish, i.e., that we only need to add to Eβ(λ),y(T1) the
terms

Eβ(λ),y

[
|v⊤

i β(λ)|2 exp(−2tsi)
]

= exp(−2tsi)/λ, i = 1, . . . , p.

• We also mention that writing X+ = (X⊤X)+X⊤y in (27) draws a connection to Example 1
studied in Wibisono (2018).

10.1.2 Statement and proof of helper Lemma 3

Lemma 3. Let X = US1/2V ⊤ be a singular value decomposition. Fix λ > 0. Then, the term T1
from (28) satisfies

Eβ(λ),y(T1) =
p∑

i=1
(si/λ + 1)

[
1 − exp(−tsi)√

si
−

√
si

si + λ

]2
.
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Proof. For notational convenience, we define

A = (Ip − exp(−tX⊤X))(X⊤X)+X⊤

= V (Ip − exp(−tS))S+S1/2U⊤

B = (X⊤X + λI)−1X⊤ = V (S + λI)+S1/2U⊤.

Then, we may simply calculate, conditional on β(λ), y, that

∥Ay − By∥2
2 = y⊤A⊤Ay − 2y⊤A⊤By + y⊤B⊤By

= y⊤US1/2S+(Ip − exp(−tS))(Ip − exp(−tS))S+S1/2U⊤y

+ y⊤US1/2(S + λIp)−1(S + λIp)+S1/2U⊤y

− 2y⊤US1/2S+(Ip − exp(−tS))(S + λIp)+S1/2U⊤y

=
p∑

i=1
|u⊤

i y|2
[

1 − exp(−tsi)√
si

−
√

si

si + λ

]2
.

Now let ε ∼ Normal(0, σ2 · In). Taking expectations over the randomness in β(λ), y we see that

u⊤
i Eβ(λ),ε(yy⊤)ui = u⊤

i Eβ(λ),ε[(Xβ(λ) + ε)(Xβ(λ) + ε)⊤]ui

= u⊤
i Eβ(λ),ε[Xβ(λ)β(λ)⊤X⊤ + εε⊤]ui

= u⊤
i Eβ(λ),ε[XX⊤/λ + Ip]ui

= si/λ + 1,

i.e.,

Eβ(λ),y(T1) =
p∑

i=1
(si/λ + 1)

[
1 − exp(−tsi)√

si
−

√
si

si + λ

]2
,

as claimed.

10.1.3 Statement and proof of helper Lemma 4

Lemma 4. Let X = US1/2V ⊤ be a singular value decomposition. Fix λ > 0. Then, the term T2
from (28) satisfies

Eβ(λ),y(T2) =
p∑

i=1

√1 − exp(−2tsi)
si

−
√

1
si + λ

2

.

Proof. The result follows via calculations similar to those found in the proof of Lemma 3. First, we
define

A = (X⊤X)+(Ip − exp(−2tX⊤X))
= V S+(Ip − exp(−2tS))V ⊤,

and
B = (X⊤X + λI)−1 = V (S + λI)+V ⊤.

Then, we simply calculate

∥A1/2 − B1/2∥2
F = tr(A1/2 − B1/2)(A1/2 − B1/2)]
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= tr[A + B − 2(AB)1/2]

=
p∑

i=1

√1 − exp(−2tsi)
si

−
√

1
si + λ

2

,

which gives the result.

10.1.4 Proof of Corollary 1

Our goal is to show the concentration of the Wasserstein distance with respect to the randomness
due to β(λ) and ε ∼ Normal(0, σ2 · In). Recall from equation (28) that we have, for a constant c
that does not depend on β, ε, that

W 2
2 (βt, β(λ)) = ∥Qy∥2

2 + c = R + c,

Q := [(Ip − exp(−tX⊤X))(X⊤X)+ − (X⊤X + λI)−1]X⊤.

This shows that R is a quadratic form of y. In more detail, we define Z = [λ1/2β; ε], and note that
Z ∼ N (0, In+p), We have that

R = Z⊤MZ

M = A⊤A

A = Q[λ−1/2X; In].

Due to the orthogonal invariance of the Gaussian distribution, i.e., OZ
d= Z for all orthogonal

matrices O, we can diagonalize the matrix M , and get that R has the distribution of a weighted sum
of χ2(1) random variables, where the weights are the eigenvalues of M . Let us define the eigenvalues
of M to be mi ≥ 0, i = 1, . . . , n + p. Then, we have

R
d=

n+p∑
i=1

miZ
2
i .

Thus, to derive the concentration of the Wasserstein distance, we need to know how weighted sums
of chi-squared random variables concentrate. While this is not a standard topic in introductory
probability or machine learning, there has been a great deal of work on understanding the distribution
of such weighted chi-squared random variables. See, e.g., Robbins and Pitman (1949); Gurland
(1953); Jensen and Solomon (1972); Davis (1977); Solomon and Stephens (1977); Gabler and Wolff
(1987); Bausch (2013), and references therein. However, since here we are interested only in a
concentration inequality for the Wasserstein distance, we can use the simpler Bernstein inequality for
sub-exponential random variables, or equivalently the Hanson-Wright inequality for random matrices
with sub-Gaussian entries. See Vershynin (2018) for a discussion of these topics. Bernstein’s inequality
(see, e.g., Theorem 2.8.1 in Vershynin (2018)), or equivalently the Hanson-Wright inequality (e.g.,
Theorem 6.2.1 in Vershynin (2018)), show that for some constant c > 0, and all w ≥ 0,

P{|Z⊤MZ − trM | ≥ w} ≤ 2 exp
[
−c min

(
w2

∥M∥2
F

,
w

∥M∥op

)]
.

In our case, we can write that

∥M∥2
F = ∥A∥4

4

∥M∥op = ∥A∥2
∞,

where ∥A∥q is the q-Schatten norm of A. This proves the claim.
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10.1.5 Proof of Lemma 1

The proof of the result is conceptually similar to that of Theorem 1, so we skip some of the details.
First of all, as noted earlier, because the standard process (10) is also of the form (25), we may once
again invoke Lemma 2 from above, this time with M = X⊤X + λIp and µ = (X⊤X + λIp)−1X⊤y.
Doing so, we obtain

β̃t ∼ N

(
[Ip − exp(−t[X⊤X + λIp])]β(λ), (X⊤X + λIp)−1[Ip − exp(−2t(X⊤X + λIp))]

)
,

conditional on β(λ), y. Then, following steps similar to those found in the proof of Theorem 1, we
can calculate for the standard process that

W 2
2 (β̃t, β(λ) | y) =

∥∥∥ exp(−t[X⊤X + λIp])β(λ)
∥∥∥2

2

+
∥∥∥(X⊤X + λI)−1/2

{[
Ip − exp(−2t(X⊤X + λIp))

]1/2 − Ip

}∥∥∥2

F
,

again conditional on β(λ), y. Taking expectations in the previous display gives

Eβ(λ),y

[
W 2

2 (β̃t, β(λ) | y)
]

=
p∑

i=1
h̃(si; t, λ),

where we write

h̃(s; t, λ) = exp(−2t[s + λ]) s/λ + 1
(s + λ)2 +

[
{1 − exp(−2t[s + λ])}1/2 − 1

]2

s + λ
,

in analogy to the quantity h(x; t, λ) defined in the proof of Theorem 1.
To find the Wasserstein distance at the stopping time t∗ = 1/λ, we may plug the stopping time

into the previous display and simplify, as in

h̃(si; 1/λ, λ) = exp(−2[s/λ + 1]) 1
λ(s + λ) +

[
{1 − exp(−2[s/λ + 1])}1/2 − 1

]2

s + λ

:= h̃(s, λ).

To obtain the claimed result, it is enough to show that h̃(s, λ) ≥ U(s, λ), where U(s, λ) = As∧Bλ
s(s+λ)

is a summand in our upper bound on the Wasserstein distance between the early-stopped process βt

and the posterior β(λ) | y, from Theorem 1. But this is equivalent to showing, for x = s/λ, that

exp(−2[x + 1])/λ +
[
{1 − exp(−2[x + 1])}1/2 − 1

]2

A ∧ (B/x) ≥ 1.

Suppose that x is such that A ∧ (B/x) = A, i.e., A ≤ B/x, or that x ≤ B/A. Then, it is enough to
show that in the regime of interest, the bias term is large enough, namely that

exp(−2[x + 1])/λ ≥ A.

Rearranging, we find that for each fixed x ≥ 0, it is enough that

λ ≤ A−1 exp(−2[x + 1]).

This shows that, for each fixed value of x = s/λ ≤ B/A, if λ is small enough, then the early-stopped
process at time t = 1/λ improves over early stopping with the standard process at the same time,
completing the proof.
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10.1.6 Proof of Corollary 4

Key to our proof of the result is the following helper lemma, which is a modest extension to Theorem
1 from Cheng et al. (2020). In its original form, Theorem 1 in Cheng et al. (2020) bounds the
discretization error so long as the process noise is itself bounded, which is obviously not the case in
(6). Below is our version of the result, which accommodates Gaussian noise.

Lemma 5 (Extension to Theorem 1 in Cheng et al. (2020)). Let β(k) and βt have dynamics as
defined in (6) and (11) respectively, t ∈ [kτ, (k + 1)τ) and the initial condition satisfy E

[
∥β(0)∥2

2
]

≤ p
λ

and E
[
∥β0∥2

2
]

≤ p
λ . Define the constants

LN = 4γLξ

cm
, αq = L + L2

N

2c2
m

, Rq = max

{
R,

16γ2LN

mcm

}
,

η = min
{

m

2 ,
2c2

m

32R2
q

}
exp

(
−7

3αqR2
q

)
, 0 < c <

√
2, γ = √

p

and Lξ is small positive constant. Let ϵ̂ ≤
(

16(L+L2
N )

η

)
exp(7αqRq/3) Rq

αqR2
q+1 . Let τ be a step size

satisfying

τ ≤ min


η2 ϵ̂2

512γ(L2+L4
N

) exp
(

14αq

R2
q

)
2ηϵ̂

γ(L2+L4
N

) exp
(

7αq

R2
q

)√
p/λ

.

If we assume that β(0) = β0, then there exists a coupling between β(k) and βt such that

E
[
∥β(k) − βt∥2

]
≤ ϵ̂.

With Lemma 5 in hand, proving Corollary 4 is immediate. As a result of the helper lemma,
we have W1(β(k), βt) = O(p1/2τ1/2). Since W 2

2 (β(k), βt) ≤ p · W1(β(k), βt), we have W 2
2 (β(k), βt) =

O(p3/2τ1/2). For more details, readers can refer to Cheng et al. (2020).

10.2 Proofs for Section 5
In this section, we start by stating and proving a general result (i.e., Theorem 4, appearing below),
from which Corollaries 2 and 3 in the main paper follow. Then, we show how the corollaries may
be obtained from the general result. We also prove the sharper (but less transparent) bound, i.e.,
Theorem 2 in the main paper, relating the Kullback-Leibler divergence between the distribution of
the early-stopped process βt and the posterior β(λ) | y.

The arguments given in this section differ from those given in the previous section, as in the
general case, there is no convenient expression for the law of the early-stopped process, or for the
posterior distribution. Therefore, we proceed somewhat indirectly here. Our jumping off point is the
classical theory of gradient flows on function spaces (Ambrosio et al., 2008), which gives us some
control over the Kullback-Leibler divergence between the law of the early-stopped process and the
posterior; the main technical challenges that arise are due to the fact that the stationary distribution
of the early-stopped process βt does not coincide with the target posterior fβ(λ)|y — a peculiar (and
challenging) feature of our problem setting.

Below is the main result of this section, followed by its proof. For all of the proofs in this section,
we omit the dependence on λ, R in the subscripts for any of the defined constants (unlike in the
actual statements of the theorems), in order to keep the notation below light.

Theorem 4 (Bound on expected K-L divergence, (non-)strongly log-concave posterior). Assume
the data model (15), as well as condition A1. Additionally, assume either (i) condition A2, or (ii)
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conditions A3 and A4, i.e., for some R ≥ 0, assume that the likelihood fy|β(λ) is m′
R,λ-strongly

log-concave outside of a ball centered around zero with radius R. Finally, assume there exist constants
b1, b2, q > 0, such that for all R and s ≥ 0, we have the uniform bound

Eβs
∥βs∥2

2 ≤ b1 + b2 exp(−qs). (30)

Now define the constants

m′
R,λ =

{
m + λ, R = 0,

λ, R > 0,

and c = λ2/2. Then, there exist constants a1, a2 > 0, such that the law of early-stopped Langevin
dynamics (11), at time t > 0 and under the initialization β0 ∼ Normal(0, Ip/λ), satisfies

Eβ(λ),y

[
Dkl(βt∥β(λ) | y)

]
≤ a1 · exp

(
−m′

R,λt
)

+ b1c ·
1 − exp(−m′

R,λt)
m′

R,λ

+ b2c ·
exp((m′

R,λ − q)t) − 1
m′

R,λ − q
· exp(−m′

R,λt).

Proof. Recall that, under the data model (15), the target posterior has the form

fβ(λ)|y(β; y) ∝ exp
(

− Fy|β(λ)(β; y) − (λ/2) · ∥β∥2
2

)
. (31)

Write fβt
for the Radon-Nikodym derivative of Law(βt), i.e., the density of the early-stopped process

at time t. Then, the probability measure Law(βt), and the velocity field ∇fy|β(λ) + ∇ log fβt , satisfy
the usual continuity (Fokker-Planck) equation. Therefore, Lemma 1 in Cheng and Bartlett (2018)
applies, itself stemming from the classical theory of gradient flows (Ambrosio et al., 2008), giving

dDkl(βt∥β(λ) | y)
dt

= −Eβt

[〈
∇ log

(
fβt

(βt)
fβ(λ)|y(βt)

)
, ∇ log fβt

(βt) + ∇Fy|β(λ)(βt)
〉]

,

conditional on β(λ), y. Adding and subtracting ∇ log fβ(λ)|y, then expanding, shows this equals

− Eβt

[〈
∇ log

(
fβt

(βt)
fβ(λ)|y(βt)

)
, ∇ log

(
fβt

(βt)
fβ(λ)|y(βt)

)
+
(

∇ log fβ(λ)|y(βt) + ∇Fy|β(λ)(βt)
)〉]

= −Eβt

∥∥∥∥∥∇ log
(

fβt
(βt)

fβ(λ)|y(βt)

)∥∥∥∥∥
2

2

− Eβt

[〈
∇ log

(
fβt

(βt)
fβ(λ)|y(βt)

)
, ∇ log fβ(λ)|y(βt) + ∇Fy|β(λ)(βt)

〉]
.

Plugging (31) into the previous display, and using the basic inequality a⊤b ≤ (1/2)(∥a∥2
2 + ∥b∥2

2), we
get

dDkl(βt∥β(λ) | y)
dt

= −Eβt

∥∥∥∥∥∇ log
(

fβt
(βt)

fβ(λ)|y(βt)

)∥∥∥∥∥
2

2

+ Eβt

[〈
∇ log

(
fβt

(βt)
fβ(λ)|y(βt)

)
, λ · βt

〉]
(32)

≤ −Eβt

∥∥∥∥∥∇ log
(

fβt
(βt)

fβ(λ)|y(βt)

)∥∥∥∥∥
2

2

+ 1
2 · Eβt

∥∥∥∥∥∇ log
(

fβt
(βt)

fβ(λ)|y(βt)

)∥∥∥∥∥
2

2

+ λ2

2 · Eβt
∥βt∥2

2

≤ −1
2 · Eβt

∥∥∥∥∥∇ log
(

fβt(βt)
fβ(λ)|y(βt)

)∥∥∥∥∥
2

2

+ λ2

2 · Eβt
∥βt∥2

2.
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Now we use the fact that the posterior fβ(λ)|y satisfies Assumption A2 (or Assumptions A3 and
A4), i.e., that it is m′-strongly log-concave (possibly outside of a certain ball), which gives the bound

dDkl(βt∥β(λ) | y)
dt

≤ −m′ · Dkl(βt∥β(λ) | y) + λ2

2 · Eβt
∥βt∥2

2. (33)

An application of Gronwall’s inequality (see, e.g., Lakshmikantham et al. (1989)) gives

Dkl(βt∥β(λ) | y) ≤ Dkl(β0∥β(λ) | y) · exp (−m′t) + c ·
∫ t

0
Eβs

∥βs∥2
2 · exp (−m′[t − s]) ds. (34)

Now we must control the integral appearing on the right-hand side of (34), above. But from (30),
we have ∫ t

0
Eβs∥βs∥2

2 · exp (−m′[t − s]) ds ≤
∫ t

0
(b1 + b2 exp(−qs)) exp (−m′[t − s]) ds,

and using the identity
∫ t

0 exp(bs)ds = [exp(bt) − 1]/b, we can explicitly calculate that∫ t

0
Eβs∥βs∥2

2 exp (−m′[t − s]) ds ≤ b1

(
1 − exp(−m′t)

m′

)
+
∫ t

0
b2 exp(−qs − m′t + m′s)ds

= b1

(
1 − exp(−m′t)

m′

)
+ b2

(
exp((m′ − q)t) − 1

m′ − q

)
exp(−m′t). (35)

Finally, substituting the bound on the integral, in (35), back into the bound on the Kullback-Leibler
divergence, in (34), gives

Dkl(βt∥β(λ) | y) ≤ a1 (exp (−m′t) + b1c)
(

1 − exp(−m′t)
m′

)
+ b2c

(
exp((m′ − q)t) − 1

m′ − q

)
exp(−m′t).

(36)

Here, we wrote a1 ≥ Dkl(β0∥β(λ) | y), for another numerical constant a1 > 0. Taking expectations
over β(λ), y completes the proof.

10.2.1 Proof of Corollary 2

Under the conditions assumed by the corollary, the helper Lemmas 6 and 8 appearing below
give us control over Eβt

∥βt∥2
2, as well as the Kullback-Leibler divergence between the initial point

β0 ∼ Normal(0, Ip/λ) and the posterior, required to apply Theorem 4. Putting these lemmas together
with Theorem 4, we see

Eβ(λ),y

[
Dkl(βt∥β(λ) | y)

]
≤
(

pL

2λ
+ p

2 log λ

m′

)
exp (−m′t)

+ 2c
( p

m
+ ∥µ∥2

2

)(1 − exp(−m′t)
m′

)
+ 2c

p

m

(
L − λ

λ
+ log λ

m

)(
exp((λ − m)t) − 1

λ − m

)
exp(−m′t).

Making the appropriate definitions gives the result.

10.2.2 Statement and proof of helper Lemma 6

Lemma 6. Assume the same conditions, and constants, as in Corollary 2. Then, for any t > 0, it
follows that

Eβt∥βt∥2
2 ≤ 2

( p

m
+ ∥µ∥2

2

)
+ 2p

m

(
L

λ
− 1 + log λ

m

)
· exp(−2mt).
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Proof. Let π denote the stationary distribution of the early-stopped process. We choose an auxiliary
random variable β∞ ∼ π ∝ exp(−fβ∞) with µ = E(β∞) which couples optimally with βt: (βt, β∞) ∼
P ∈ P(Law(βt), Law(β∞)). Then, adding and subtracting β∞ shows

Eβt∥βt∥2
2 = E(βt,β∞)∼P

[
∥β∞ + (βt − β∞)∥2

2

]
≤ 2 · Eβ∞∼π∥β∞∥2

2 + 2 · E(βt,β∞)∼P

[
∥βt − β∞∥2

2

]
. (37)

Now there are (at least) two ways to bound the first term on the right-hand side of (37),
Eβ∞∼π∥β∞∥2

2. The first is to simply use part (ii) of Proposition 1 in Durmus and Moulines (2019),
in order to get

Eβ∞∼π∥β∞∥2
2 ≤ p

m
+ ∥µ∥2

2.

The second way is to invoke the Brascamp-Lieb inequality (Brascamp and Lieb, 1976a,b). Concretely,
one can take the p coordinate functions xi, i = 1, . . . , p, and sum the resulting bounds

Var
(
(β∞)i

)
≤ Eβ∞∼π

[(
∇2fβ∞(β∞)

)−1
ii

]
,

to get
Eβ∞∼π

[
∥β∞ − µ∥2

2

]
≤ Eβ∞∼π

[
tr
(
∇2fβ∞(β∞)

)−1
]
.

Then, using that ∇2fβ∞(β) ⪰ m · Ip, for all β ∈ Rp, we have

Eβ∞∼π

[
tr
(
∇2fβ∞(β∞)

)−1
]

≤ p/m,

giving the required bound.
To bound the second term on the right-hand side in (37), we would like to exploit the transportation

cost inequality (16). Therefore, we put together the well-known contraction inequality (see, e.g.,
Chapter 2 in Villani (2008))

W2(βt, π) ≤ exp(−mt) · W2(β0, π),

with (16) and the helper Lemma 7 appearing below to get, for the second term above, that

E(βt,β∞)∼P

[
∥βt − β∞∥2

2

]
≤ W 2

2 (βt, π) ≤ exp(−2mt) · W 2
2 (β0, π)

≤ exp(−2mt) · 2
m

· Dkl(β0∥π)

≤ exp(−2mt) · 2p

m

(
L

λ
− 1 + log λ

m

)
.

Putting together the two bounds completes the proof.

10.2.3 Statement and proof of helper Lemma 7

Lemma 7. Assume the same conditions, and constants, as in Corollary 2. Then, for any t > 0, it
follows that

Dkl(β0∥π) ≤ p(L − λ)
2λ

+ p

2 log λ

m
.

In the proofs of the remaining helper lemmas in this section, we reuse some of the notation from
the proof of Lemma 6.
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Proof. Let
β∗ ∈ arg min

β∈Rp

fβ∞(β; y).

Also, for any β ∈ Rp, let
f̄(β) = fβ∞(β; y) − fβ∞(β∗; y).

Dkl(β0∥π) =
∫

fβ0(β) log
(

fβ0(β)
π(β)

)
dβ

=
∫

fβ0(β) log fβ0(β)dβ −
∫

fβ0(β) log π(β)dβ. (38)

So, it is enough to bound the two terms on the right-hand side of (38) above, separately.
We start with the second term. Observe, for all β ∈ Rp, that we have both

π(β) = exp(−f̄(β))∫
exp(−f̄(β′))dβ′

,

and
m

2 ∥β∥2
2 ≤ f̄(β) ≤ L

2 ∥β∥2
2,

with the latter pair of inequalities following by our Assumptions A1 and A2. Therefore, we have that

− log π(β) = f̄(β) + log
∫

exp
(
−f̄(β′)

)
dβ′

≤ L

2 ∥β∥2
2 + log

∫
exp

(
−m

2 ∥β′∥2
2

)
dβ′

= L

2 ∥β∥2
2 + p

2 log 2π

m
,

implying that

−
∫

fβ0(β) log π(β)dβ ≤
∫ (

L

2 ∥β∥2
2 + p

2 log 2π

m

)(
λ

2π

) p
2

exp
(

−λ

2 ∥β∥2
2

)
dβ

≤ pL

2λ
+ p

2 log 2π

m
.

In a similar way, we can calculate for the first term in (38) that∫
fβ0(β) log fβ0(β)dβ = −p

2 log 2π

λ
− p

2 .

Putting it all together, we have that

Dkl(β0∥π) ≤ pL

2λ
+ p

2 log 2π

m
− p

2 log 2π

λ
− p

2

= p(L − λ)
2λ

+ p

2 log λ

m
,

as required.
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10.2.4 Proof of Corollary 3

Similar to what was done in the proof of Corollary 2, we use helper Lemmas 8 and 9, which are
applicable under the assumed conditions, to get

Eβ(λ),y

[
Dkl(βt∥β(λ) | y)

]
≤ pL

2λ
exp (−λt) + b1c

(
1 − exp(−λt)

λ

)
+ cb2

(
exp((λ − α)t) − 1

λ − α

)
exp(−λt),

where

b1 = 2
(

8p

α
log 2L

m
+ 256

α

L2

m2 LR2 + ∥µ∥2
2

)
,

b2 = 2
α

(
p(L − λ)

2λ
+ p

2 log 2λ

m
+ 32 L2

m2 LR2
)

.

The result follows after making the appropriate definitions.

10.2.5 Statement and proof of helper Lemma 8

Lemma 8. Assume the same conditions, and constants, as in Corollary 3. Then, for any t > 0, it
follows that

Dkl(β0∥β(λ) | y) ≤

{
pL
2λ + p

2 log λ
m+λ , R = 0,

pL
2λ , R > 0.

Proof. The proof is identical to that of Lemma 7, with the following two modifications. First, when
R = 0, we set m (in Lemma 7) to m + λ. And second, when R > 0, we set m (in Lemma 7) to λ,
and L (in Lemma 7) to L + λ.

10.2.6 Statement and proof of helper Lemma 9

Lemma 9. Assume the same conditions, and constants, as in Corollary 3. Then, for any t > 0, it
follows that

Eβt
∥βt∥2

2 ≤ b1 + b2 exp(−2αt),

where

b1 = 2
(

8p

α
log 2L

m
+ 256

α

L2

m2 LR2 + ∥µ∥2
2

)
,

b2 = 2
α

(
p(L − λ)

2λ
+ p

2 log 2λ

m
+ 32 L2

m2 LR2
)

.

Proof. The proof is similar to that of Lemma 6. Just as was done in that proof, some manipulations
show

Eβt
∥βt∥2

2 = E(βt,β∞)∼P

[
∥β∞ + (βt − β∞)∥2

2

]
≤ 2 · Eβ∞∼π∥β∞∥2

2 + 2 · E(βt,β∞)∼P

[
∥βt − β∞∥2

2

]
≤ 2

(
8p

α
log 2L

m
+ 256

α

L2

m2 LR2 + ∥µ∥2
2

)
+ 2W 2

2 (βt, π). (39)
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Here, to get (39), we used the inequality

Eβ∞∼π∥β∞∥2
2 ≤ 8p

α
log 2L

m
+ 256

α

L2

m2 LR2 + ∥µ∥2
2,

which follows from Lemma 5 in Ma et al. (2019b).
On the other hand, using (16) and helper Lemma 10, we have

W 2
2 (βt, π) ≤ 2

α
· Dkl(βt∥π)

≤ 2
α

exp(−2αt) · Dkl(β0∥π)

≤ 2
α

(
p(L − λ)

2λ
+ p

2 log 2λ

m
+ 32 L2

m2 LR2
)

. (40)

Plugging (40) into (39) gives

E∥βt∥2
2 ≤ 2

(
8p

α
log 2L

m
+ 256

α

L2

m2 LR2 + ∥µ∥2
2

)
+

2
α

(
p(L − λ)

2λ
+ p

2 log 2λ

m
+ 32 L2

m2 LR2
)

· exp(−2αt),

which shows the result.

10.2.7 Statement and proof of helper Lemma 10

Lemma 10. Assume the same conditions, and constants, as in Corollary 3. Then, for any t > 0, it
follows that

Dkl(β0∥π) ≤ p(L − λ)
2λ

+ p

2 log 2λ

m
+ 32 L2

m2 LR2.

Proof. The proof is similar to that of Lemma 7, so we only mention the major changes here. In the
setting of the present lemma, we have the following lower bound from Ma et al. (2019b):

f̄(β) ≥ m

4 ∥β′∥2
2 − 32 L2

m2 LR2.

Therefore, just as in the proof of Lemma 7, we can calculate

− log π(β) = f̄(β) + log
∫

exp
(
−f̄(β′)

)
dβ′

≤ L

2 ∥β∥2
2 + log

∫
exp

(
−m

4 ∥β′∥2
2 + 32 L2

m2 LR2
)

dβ′

= L

2 ∥β∥2
2 + p

2 log 4π

m
+ 32 L2

m2 LR2.

This gives

−
∫

fβ0(β) log π(β)dβ ≤
∫

log π(β)
(

λ

2π

) p
2

exp
(

−λ

2 ∥β∥2
2

)
dβ

≤ pL

2λ
+ p

2 log 4π

m
+ 32 L2

m2 LR2.
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Therefore, we have

Dkl(β0∥π) =
∫

fβ0(β) log fβ0(β)dβ −
∫

fβ0(β) log π(β)dβ

≤ pL

2λ
+ p

2 log 4π

m
+ 32 L2

m2 LR2 − p

2 log 2π

λ
− p

2

= p(L − λ)
2λ

+ p

2 log 2λ

m
+ 32 L2

m2 LR2,

which completes the proof.

10.2.8 Proof of Theorem 2

The structure of the proof is similar to that of Theorem 4 above; therefore, we only highlight the
main differences here. To start, we follow the same logic as in the proof of Theorem 4 through (32),
but then invoke Young’s inequality in its more general form, i.e., 2x⊤y ≤ a∥x∥2

2 + ∥y∥2
2/a, for some

a > 0. Doing so, and simplifying, gives

dDkl(βt∥β(λ) | y)
dt

= − Eβt

∥∥∥∥∇ log
(

fβt(βt)
fβ(λ)|y(βt)

)∥∥∥∥2

2
+ Eβt

[〈
∇ log

(
fβt(βt)

fβ(λ)|y(βt)

)
, λβt

〉]
≤ − Eβt

∥∥∥∥∇ log
(

fβt
(βt)

fβ(λ)|y(βt)

)∥∥∥∥2

2
+ a

2 · Eβt

∥∥∥∥∇ log
(

fβt
(βt)

fβ(λ)|y(βt)

)∥∥∥∥2

2
+ λ2

2a
· Eβt

∥βt∥2
2

≤(a/2 − 1) · Eβt

∥∥∥∥∇ log
(

fβt(βt)
fβ(λ)|y(βt)

)∥∥∥∥2

2
+ λ2

2a
· Eβt∥βt∥2

2,

conditional on β(λ), y. Then, just as in (32), Assumption A2 (or Assumptions A3 and A4) imply

dDkl(βt∥β(λ) | y)
dt

≤ (a/2 − 1)m′ · Dkl(βt∥β(λ) | y) + c · Eβt∥βt∥2
2,

where a < 2, and c = λ2/(2a). We then follow essentially the same steps through (36), with
m′′ = 2(1 − a/2)m′, instead of m′, giving

Dkl(βt∥β(λ) | y) ≤ a1 exp (−m′′t) + b1c

(
1 − exp(−m′′t)

m′′

)
+ b2c

(
exp((m′′ − α)t) − 1

m′′ − α

)
exp(−m′′t).

(41)

Now observe that the bound in (41) has the form

G(t) = q + r exp(−ut) + v exp(−wt),

where

q = b1
c

m′′ , u = m′′, w = α,

r = a1 − b1
c

m′′ − b2c
1

m′′ − α
, v = b2c

1
m′′ − α

are constants that do not depend on t. Therefore, differentiating G(t) with respect to t gives

G′(t) = r exp(−ut)′ + v exp(−wt)′

= −ru exp(−ut) + −vw exp(−wt)
= [−ru exp([w − u]t) + −vw] exp(−wt),

36



so that the optimal stopping time t∗ > 0 must satisfy ru exp([w − u]t) + vw = 0, i.e.,

t∗ =
{

1
w−u log

(
− wv

ru

)
, if wv

ru < 0
∞, otherwise.

Putting it all together, we get that

Dkl(βt∗∥β(λ) | y) ≤ inf
a∈(0,2)

G(a; λ, m, L, p),

and taking expectations completes the proof.

10.3 Proof of Theorem 3

We start by bounding Ef
β(1) ,...,f

β(k)

[(
1
k

∑k
j=1 g(β(j)) − Efβ(λ)|y

[
g(β(λ))

])2]
conditioned on y. For

notational convenience, for the rest of this proof, let us define

g(y) = Ef
β(1) ,...,f

β(k)

[(
1
k

k∑
j=1

g(β(j)) − Efβ(λ)|y

[
g(β(λ))

])2]
.

Using Jensen’s inequality, we can write

g(y) ≤ 1
k

k∑
j=1

Ef
β(1) ,...,f

β(k)

[(
g(β(j)) − Efβ(λ)|y

[
g(β(λ))

])2
]

= 1
k

k∑
j=1

Ef
β(k)

[(
g(β(j))

)2
+
(
Efβ(λ)|y

[
g(β(λ))

])2 − 2g(β(j))Efβ(λ)|y

[
g(β(λ))

]]

≤ 1
k

k∑
j=1

Ef
β(k)

[(
g(β(j))

)2
+ Efβ(λ)|y

[
(g(β(λ)))2 ]− 2g(β(j))Efβ(λ)|y

[
g(β(λ))

]]
.

Given y is fixed, β(j) and β(λ)|y are independent, we can then write the above inequality as

g(y) ≤ 1
k

k∑
j=1

Ef
β(k) ,fβ(λ)|y

[(
g(β(j)) − g(β(λ))

)2
]

≤ Q2

k

k∑
j=1

E
[
∥β(j) − β(λ)∥2

]
.

Last inequality follows from Lipschitz continuity of g. Let βt ∼ fβt
and β(λ) ∼ fβ(λ)|y with an

optimal coupling (βt, β(λ)) so that E[∥βt − β(λ)∥2] = W2(βt, β(λ)). Then

g(y) ≤ Q2

k

k∑
j=1

E
[
∥β(j) − βt + βt − β(λ)∥2

2

]

≤ 2Q2

k

k∑
j=1

E
[
∥β(j) − βt∥2

2 + ∥βt − β(λ)∥2
2

]

= 2Q2

k

k∑
j=1

(
E
[
∥β(j) − βt∥2

2 + W2(βt, β(λ))
])

.
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Let βt ∼ fβt and β(j) ∼ fβ(j) with an optimal coupling (βt, β(j)) so that E[∥βt − β(λ)∥2
2] =

W2(βt, β(λ)). Then

g(y) ≤ 2Q2

k

k∑
j=1

(
W 2

2

(
β(j), βt

)
+ W 2

2 (βt, β(λ))
)

.

For tj ∈ [jτ, (j + 1)τ), using Lemma 5, and equation 36 in proof of Theorem 4 along with Talagrand
inequality, we have

g(y) ≤ 2Q2O(d3/2τ1/2) + 4Q2

m′
R,λk

k∑
j=1

(
a1 · exp

(
−m′

R,λtj

)
+ b1c ·

1 − exp(−m′
R,λt)

m′
R,λ

+ b2c ·
exp((m′

R,λ − q)tj) − 1
m′

R,λ − q
· exp(−m′

R,λtj)
)
,

where a1, b1 and b2 are defined in Theorem 4, and c = λ2

2 . Substituting a1, b1 and b2

• in the strongly convex case, we get

g(y) ≤ 2Q2O(d3/2τ1/2) + 4Q2

m′
R,λk

k∑
j=1

((
pL

2λ
+ p

2 log λ

m′

)
exp (−m′t)

+ 2c
( p

m
+ ∥µ∥2

2

)(1 − exp(−m′tj)
m′

)
+ 2c

p

m

(
L − λ

λ
+ log λ

m

)(
exp((λ − m)tj) − 1

λ − m

)
exp(−m′tj)

)
,

• in the non-strongly convex case, we get

g(y) ≤ 2Q2O(d3/2τ1/2) + 4Q2

m′
R,λk

k∑
j=1

(
pL

2λ
exp (−λtj) + b1c

(
1 − exp(−λtj)

λ

)

+ cb2

(
exp((λ − α)tj) − 1

λ − α

)
exp(−λtj)

)
,

where

b1 = 2
(

8p

α
log 2L

m
+ 256

α

L2

m2 LR2 + ∥µ∥2
2

)
,

b2 = 2
α

(
p(L − λ)

2λ
+ p

2 log 2λ

m
+ 32 L2

m2 LR2
)

.
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